Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Mathematical Study

نویسندگان

  • J. H. Park
  • Joseph W. Jerome
چکیده

We examine qualitative properties of solutions of self-consistent Poisson-NernstPlanck (PNP) systems, including uniqueness. In the case of vanishing permanent charge, the predominant case studied, our results unveil a rich structure inherent in these systems, one that is determined by the boundary conditions and the signs of the oppositely charged carrier fluxes. A particularly significant special case, that of simple boundary conditions, is shown to lead to uniqueness, and to a complete characterization. This case underlies the more complicated cases studied later. A contraction mapping principle is included for completeness, and allows for an arbitrary permanent charge distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Qualitative Properties of Steady-State Poisson-Nernst-Planck Systems: Perturbation and Simulation Study

Poisson-Nernst-Planck (PNP) systems are considered in the case of vanishing permanent charge. A detailed case study, based on natural categories described by system boundary conditions and flux, is carried out via simulation and singular perturbation analysis. Our results confirm the rich structure inherent in these systems. A natural quantity, the quotient of the Debye and characteristic lengt...

متن کامل

Voltage laws for three-dimensional microdomains with cusp-shaped funnels derived from Poisson-Nernst-Planck equations

We study the electro-diffusion properties of a domain containing a cusp-shaped structure in three dimensions when one ionic specie is dominant. The mathematical problem consists in solving the steady-state Poisson-Nernst-Planck (PNP) equation with an integral constraint for the number of charges. A non-homogeneous Neumann boundary condition is imposed on the boundary. We construct an asymptotic...

متن کامل

An Error Analysis for the Finite Element Approximation to the Steady-State Poisson-Nernst-Planck Equations

Poisson-Nernst-Planck equations are a coupled system of nonlinear partial differential equations consisting of the Nernst-Planck equation and the electrostatic Poisson equation with delta distribution sources, which describe the electrodiffusion of ions in a solvated biomolecular system. In this paper, some error bounds for a piecewise finite element approximation to this problem are derived. S...

متن کامل

Qualitative Properties of Ionic Flows via Poisson-nernst-planck Systems with Bikerman’s Local Hard-sphere Potential: Ion Size Effects

We study a quasi-one-dimensional steady-state Poisson-NernstPlanck model for ionic flows through membrane channels with fixed boundary ion concentrations and electric potentials. We consider two ion species, one positively charged and one negatively charged, and assume zero permanent charge. Bikerman’s local hard-sphere potential is included in the model to account for ion size effects on the i...

متن کامل

Numerical Solution of the Coupled Nernst-Planck and Poisson Equations for Liquid Junction and Ion Selective Membrane Potentials

A new numerical model is presented for analyzing the propagation of ionic concentrations and electrical potential in space and time in the liquid junction and in the solution/ion-exchanging membrane system. In this model, diffusion and migration according to the Nernst-Planck (NP) flux equation govern the transport of ions, and the electrical interaction of the species is described by the Poiss...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 57  شماره 

صفحات  -

تاریخ انتشار 1997